Main Article Content

Abstract

On December 17th 2022 there was hail in the Jakarta area. This phenomenon is unique and rarely occurs in the Equator region. This research was carried out by analyzing the profile of the convective clouds that produce hail using weather radar data. Data analysis was carried out by looking at factors from global, regional and local atmospheric conditions that caused the convective system to occur in Jakarta on that date. Then analyze the convective cloud structure that causes hail and estimate the probability of hail events based on ZHAIL products from weather radar. The hail that occurred in Jakarta was caused by convective clouds which occurred due to fairly unstable atmospheric conditions and was supported by weather factors on a global and regional scale. This results in the formation of cumulonimbus clouds with a strong updraft mechanism, characterized by the presence of a weak echo region (WER) and overhang echo (OE) during the cloud growth phase. Then, in the mature phase, the ice particles contained in the cumulonimbus cloud are quite large as indicated by the three body scatter spike (TBSS) pattern. The ZHAIL product shows that there is a chance of hail that is detected since the growth phase of the convective cloud and this condition consistently persists until just before the convective cloud produces hail. When hail occurs, the probability value of the hail event based on the ZHAIL product in this case study actually decreases and disappears in the radar image at a later time.

Article Details

How to Cite
haryadi, H., Mahendra Putra, R., & Widodo, P. (2024). Studi Profil Awan Konvektif Penyebab Hujan Es Di Jakarta Dengan Menggunakan Radar Cuaca (Studi Kasus Hujan Es Di Jakarta 17 Desember 2022). PENDIPA Journal of Science Education, 8(2), 210–216. https://doi.org/10.33369/pendipa.8.2.210-216

References

  1. Bluestein, H. B. (2013). Ordinary-cell convective storms. In H. B. Bluestein (Ed.), Severe convective storms and tornadoes: Observations and dynamics (pp. 95–164). Springer.
  2. Borland, S. W., Browning, K. A., Changnon, S. A., Cooper, W. A., Danielsen, E. F., Dennis, A. S. & Browning, K. A. (1977). The structure and mechanisms of hailstorms. In S. A. Changnon (Ed.), Hail: A review of hail science and hail suppression (pp. 1–47). Springer.
  3. Browning, K. A. (1965). Some inferences about the updraft within a severe local storm. Journal of the Atmospheric Sciences, 22(6), 669-677.
  4. Grant, L. D., & Van Den Heever, S. C. (2014). Microphysical and dynamical characteristics of low-precipitation and classic supercells. Journal of the Atmospheric Sciences, 71(7), 2604-2624.
  5. Marwitz, J. D. (1972). The structure and motion of severe hailstorms. Part I: Supercell storms. Journal of Applied Meteorology and Climatology, 11(1), 166-179.
  6. Mason, B. J. (1972). The Bakerian Lecture, 1971. The physics of the thunderstorm. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 327(1571), 433-466.
  7. Muaya, M., Khoirunnisa, A., Fadillah, R. U. N., Wardoyo, E., & Sari, F. P. (2019). Modifikasi Metode Waldvogel Berdasarkan Identifikasi Karakteristik Hujan Es Yang Dikelompokkan Berdasarkan Jarak Cakupan Radar Cuaca Pada Radar Cuaca Jakarta Tahun 2010-2019. In Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) (Vol. 4, pp. 69-81).
  8. Paski, J. A. I., Permana, D. S., Sepriando, A., & Pertiwi, D. A. S. (2017). Analisis Dinamika Atmosfer Kejadian Hujan Es Memanfaatkan Citra Radar dan Satelit Himawari-8 (Studi Kasus: Tanggal 3 Mei 2017 di Kota Bandung). In Okt (Vol. 4, pp. 69-81).
  9. Prasetyo, S., Abdilah, S., Nugraheni, I. R., & Sagita, N. (2022). Studi Awan Konvektif Penyebab Hujan Es Menggunakan Radar Cuaca Doppler Single Polarization di Bogor (23 September 2020). Jurnal Aplikasi Meteorologi, 1(1), 32-42.
  10. Shi, J., Wang, P., Wang, D., & Jia, H. (2019). Radar-based automatic identification and quantification of weak echo regions for hail nowcasting. Atmosphere, 10(6), 325.
  11. Tarbuck, E. J., & Lutgens, F. K. (1979). The atmosphere: An introduction to meteorology. Prentice Hall.
  12. Witt, A., Eilts, M. D., Stumpf, G. J., Johnson, J. T., Mitchell, E. D. W., & Thomas, K. W. (1998). An enhanced hail detection algorithm for the WSR-88D. Weather and Forecasting, 13(2), 286-303.