Main Article Content

Abstract

This research aims to validate the IKARME learning model in training students' scientific communication skills. This research uses development research through a validation study design by testing two criteria, namely content validity and construct validity. Validation involved three experts through Focus Group Discussion (FGD) activities. The research results show that the IKARME model is valid and reliable. This is based on calculations using the Aiken formula, that the V value for each instrument item is 0.75 ≤ V ≤ 1 with a very valid category and the reliability coefficient for each aspect of validity is in the range of 100% so that the validity results developed are reliable. It was concluded that the IKARME model was declared valid both in terms of content validity and construct validity to be able to improve students' scientific communication skills.

Keywords

Model IKARME; Scientific Communication Skills Model IKARME; Scientific Communication Skills

Article Details

How to Cite
Siagian, A. F., Purba, J. R. T., & Saragih, R. O. (2024). Model Integrasi Kearifan Lokal (IKARME) dalam Melatihkan Keterampilan Komunikasi Ilmiah Mahasiswa. PENDIPA Journal of Science Education, 8(2), 292–299. https://doi.org/10.33369/pendipa.8.2.292-299

References

  1. Adler, R. B., Rodman, G. R., & Sévigny, A. (2006). Understanding human communication (Vol. 10). Oxford University Press Oxford.
  2. Ardan, A. S., Ardi, M., Hala, Y., Supu, A., & Dirawan, G. D. (2015). Needs Assessment to Development of Biology Textbook for High School Class X-Based the Local Wisdom of Timor. International Education Studies, 8(4), 52–59.
  3. Arends, R. (2012). Learning to Teach Edisi Kesembilan Buku 1. Salemba Humanika. Jakarta.
  4. Bağçeci, B., & Şenel, M. (2019). Development of pupils’ critical thinking skills through journal writing. International Forum for Education, 12(1), 129–139.
  5. Baker, D. R., Lewis, E. B., Purzer, S., Bueno Watts, N., Perkins, G., Uysal, S., Wong, S., Beard, R., & Lang, M. (2009). The Communication in Science Inquiry Project (CISIP): A project to enhance scientific literacy through the creation of science classroom discourse communities.
  6. Bybee, R. W. (2010). The teaching of science: 21st century perspectives. NSTA press.
  7. Choo, S. S. Y., Rotgans, J. I., Yew, E. H. J., & Schmidt, H. G. (2011). Effect of worksheet scaffolds on student learning in problem-based learning. Advances in Health Sciences Education, 16, 517–528.
  8. Dewi, I. N., Poedjiastoeti, S., & Prahani, B. K. (2017). ELSII learning model based local wisdom to improve students’ problem solving skills and scientific communication. International Journal of Education and Research, 5(1), 107–118.
  9. Joyce, B., & Calhoun, E. (2024). Models of teaching. Taylor & Francis.
  10. Keles-Celik, N., Kose, O., Sekerci, R., Aytac, G., Turan, A., & Güler, F. (2017). Accessory Ossicles of the Foot and Ankle: Disorders and a Review of the Literature. Cureus, 9(11).
  11. Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2–10.
  12. Kyllonen, P. C. (2012). Measurement of 21st century skills within the common core state standards. Invitational Research Symposium on Technology Enhanced Assessments, 7–8.
  13. McKenney, S., & Reeves, T. C. (2014). Educational design research. Handbook of Research on Educational Communications and Technology, 131–140.
  14. Morrison, J. A., & Estes, J. C. (2007). Using scientists and real-world scenarios in professional development for middle school science teachers. Journal of Science Teacher Education, 18(2), 165–184.
  15. Mungmachon, M. R. (2012). Knowledge and local wisdom: Community treasure. International Journal of Humanities and Social Science, 2(13), 174–181.
  16. Ningsih, S. R. (2024). Pengaruh Teknologi Terhadap Produktivitas Tenaga Kerja di Indonesia. Benefit: Journal of Bussiness, Economics, and Finance, 2(1), 1–9.
  17. Onwu, G., & Mosimege, M. (2004). Indigenous knowledge systems and science and technology education: A dialogue. African Journal of Research in Mathematics, Science and Technology Education, 8(1), 1–12.
  18. Plomp, T., & Nieveen, N. (2013). Educational design research Part B: Illustrative cases. Netherlands Institute for Curriculum Development: SLO.
  19. Ramankulov, S., Usembaeva, I., Berdi, D., Omarov, B., Baimukhanbetov, B., & Shektibayev, N. (2016). Formation of the Creativity of Students in the Context of the Education Informatization. International Journal of Environmental and Science Education, 11(16), 9598–9613.
  20. Santrock, J. W. (2011). Educational psychology. McGraw-Hill.
  21. Spektor-Levy, O., Eylon, B.-S., & Scherz, Z. (2008a). Teaching communication skills in science: Tracing teacher change. Teaching and Teacher Education, 24(2), 462–477.
  22. Spektor-Levy, O., Eylon, B.-S., & Scherz, Z. (2008b). Teaching communication skills in science: Tracing teacher change. Teaching and Teacher Education, 24(2), 462–477.
  23. Suastra, I. W. (2010). Model pembelajaran sains berbasis budaya lokal untuk mengembangkan potensi dasar sains dan nilai kearifan lokal di SMP. Jurnal Pendidikan Dan Pengajaran, 43(1).
  24. Wagiran, W. (2011). Classroom Assessment: Bagian Integral Proses Pembelajaran Kejuruan Dalam Upaya Menyiapkan Tenaga Kerja Secara Holistik. INVOTEC, 7(2).
  25. Wahyuni, M., & Ariyani, N. (2020). Teori belajar dan implikasinya dalam pembelajaran. Edu Publisher.
  26. Yigit, T., & Selamet, O. F. (2016). Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system. International Journal of Hydrogen Energy, 41(32), 13901–13914.
  27. Yuenyong, C., & Narjaikaew, P. (2009). Scientific Literacy and Thailand Science Education. International Journal of Environmental and Science Education, 4(3), 335–349.