Main Article Content

Abstract

Penelitian ini mempunyai tujuan untuk mengevaluasi perubahan morfologi dan fisikokimia tepung uwi selama perendaman dan pengeringan secara simultan. Irisan umbi uwi direndam selama 0, 24, dan 48 jam yang menyebabkan fermentasi alami, irisan umbi basah dikeringkan pada pengering kabinet selama 18 jam pada suhu pengeringan 40, 50, dan 60 °C.  Irisan umbi uwi kering dihaluskan sampai 100 mesh dan dilanjutkan dengan analisis morfologi granula, kadar pati, kadar amilosa, kadar protein, kadar serat kasar, pH, titratable acidity, warna tepung uwi dan analisis gugus fungsi menggunakan ATR-FTIR.  Hasil penelitian menunjukkan terdapat lubang pada permukaan granula pati hasil fermentasi 48 jam. Keberadaan lubang pada permukaan granula menyebabkan leaching amilosa yang menyebabkan perubahan pada karakteristik fisikokimia pati. Interaksi lama perendaman dan suhu pengeringan berpengaruh sangat nyata terhadap kadar pati dan warna. Semakin lama fermentasi alami dan semakin tinggi suhu pengeringan akan menurunkan kadar pati, nilai kecerahan L*, kemerahan a* dan kebiruan b*.  Lama fermentasi alami menurunkan amilosa, protein larut air, serat kasar, dan pH, meningkatkan titratable acidity, namun tidak dipengaruhi oleh suhu pengeringan. Struktur molekul pati uwi hampir tidak berubah setelah fermentasi alami dan pengeringan, ditunjukkan tidak adanya gugus fungsi baru pada spektra FTIR. Karakteristik tepung uwi yang terbaik dari perlakuan fermentasi alami selama 24 jam dan pengeringan 60 °C dengan kadar pati 72,02%, rendemen, 24,595, kadar amilosa 31,07%, kadar protein larut 2,74%, kadar serat kasar 1,56%, pH 5,88, titratable acidity 0,68, kelarutan 13,28%, L* 67,9, a* 3,6, b* -2.

Article Details

How to Cite
PERUBAHAN MORFOLOGI DAN FISIKOKIMIA TEPUNG UWI (Dioscorea alata) AKIBAT FERMENTASI ALAMI DAN PENGERINGAN. (2024). Jurnal Agroindustri, 14(2), 155–166. https://doi.org/10.31186/jagroindustri.14.2.155-166

References

    Adetunji, A. I., du Clou, H., Walford, S. N., & Taylor, J. R. N. (2016). Complementary Effects of Cell Wall Degrading Enzymes Together With Lactic Acid Fermentation on Cassava Tuber Cell Wall Breakdown. Industrial Crops and Products, 90, 110–117. https://doi.org/10.1016/J.Indcrop.2016.06.028

    AL-Ansi, W., Sajid, B. M., Mahdi, A. A., Al-Maqtari, Q. A., AL-Adeeb, A., Ahmed, A., Fan, M., Li, Y., Qian, H., Jinxin, L., & Wang, L. (2021). Molecular Structure, Morpholo-gical, and Physicochemical Properties of Highlands Barley Starch as Affected by Natural Fermentation. Food Chemistry, 356 (November 2020), 129665. https://doi.Org/10.1016/J.Foodchem.2021.129665

    Alvarez-Ramírez, J., Vernon-Carter, E. J., Carrillo-Navas, H., & Meraz, M. (2019). Impact of Soaking Time At Room Temperature on The Physicochemical Properties of Maize and Potato Starch Granules. Starch/Staerke, 71(3–4), 1–19. https://doi.Org/10.1002/Star.201800126

    AOAC. (2011). Official Methods of Analysis of The AOAC (18th Ed. R). Association of Official Analytical Chemists.

    Aprianita, A., Purwandari, U., Watson, B., & Vasiljevic, T. (2009). Physico-Chemical Properties Of Flours And Starches From Selected Commercial Tubers Available In Australia. International Food Research Journal, 16(4), 507–520.

    Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3). 325-335. https://doi.org/10.3390/Agronomy7030056

    Cornejo-Ramírez, Y. I., Martínez-Cruz, O., Del Toro-Sánchez, C. L., Wong-Corral, F. J., Borboa-Flores, J., & Cinco-Moroyoqui, F. J. (2018). The Structural Characte-ristics of Starches and Their Functional Properties. CYTA - Journal of Food, 16(1), 1003–1017. https://doi.org/10.1080/194 76337.2018.1518343

    De Garmo, E. P., Sullivan, W. G., & Canada, J. R. (1984). Engineering Economy. Macmillan.

    Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants, 10(12). 1-24. https://doi.org/10.3390/Antiox10121967

    FAO. (2022). Crops And Livestock Products. https://www.Fao.Org/F aostat/En/#Data/QCL.

    Freire, A. L., Ramos, C. L., & Schwan, R. F. (2015). Microbiological and Chemical Parameters During Cassava Based-Substrate Fermentation Using Potential Starter Cultures Of Lactic Acid Bacteria and Yeast. Food Research International, 76, 787–795. https://doi.org/10.1016/J.Foodres.2015.07.041

    Huang, R., Xie, J., Yu, Y., & Shen, M. (2020). Recent Progress in The Research of Yam Mucilage Polysaccharides: Isolation, Structure and Bioactivities. International Journal of Biological Macromolecules, 155, 1262–1269. https://doi.org/10.1016/J.Ijbiomac.2019.11.095

    Indrastuti, E., Estiasih, T., Zubaidah, E., & Harijono, H. (2018). Physicochemical Characteristics and in Vitro Starch Digestibility of Spontaneously Combined Submerged and Solid State Fermented Cassava (Manihot Esculenta Crantz) Flour. Current Nutrition & Food Science, 14(7). https://doi.Org/10.2174/1573401314666180515112908

    Indrastuti, Y. E., Estiasih, T., Christanti, R. A., Pulungan, M. H., Zubaedah, E., & Harijono. (2018). Microbial and Some Chemical Constituent Changes of High Cyanide Cassava During Simultant Spontaneous Submerged and Solid State Fermentation of “Gadungan Pohung.” International Food Research Journal, 25(2), 487–498.

    Kale, S. J., Jha, S. K., Jha, G. K., Sinha, J. P., & Lal, S. B. (2015). Soaking Induced Changes in Chemical Composition, Glycemic Index And Starch Characteristics of Basmati Rice. Rice Science, 22(5), 227–236. https://doi.org/10.1016/J.Rsci.2015.09.002

    Liu, X., Lu, K., Yu, J., Copeland, L., Wang, S., & Wang, S. (2019). Effect of Purple Yam Flour Substitution For Wheat Flour on in Vitro Starch Digestibility of Wheat Bread. Food Chemistry, 284, 118–124. https://doi.org/10.1016/J.Foodchem.2019.01.025

    Lu, Z. H., Li, L. Te, Min, W. H., Wang, F., & Tatsumi, E. (2005). The Effects of Natural Fermentation On The Physical Properties of Rice Flour And The Rheological Characteristics of Rice Noodles. International Journal of Food Science And Technology, 40(9), 985–992. https://doi.org/10.1111/J.1365-2621.2005.01032.X

    Obadina, A. O., Babatunde, B. O., & Olotu, I. (2014). Changes in Nutritional Composition, Functional, and Sensory Properties of Yam Flour as a Result af Presoaking. Food Science And Nutrition, 2(6), 676–681. https://doi.org/10.1002/Fsn3.150

    Ogunnaike, A. M., Adepoju, P. A., Longe, A. O., Elemo, G. N., & Oke, O. V. (2015). Effects of Submerged And Anaerobic Fermentations on Cassava Flour (Lafun). African Journal Of Biotechnology, 14(11), 961–970. https://doi.org/10.5897/AJB12.25700

    Oliveira, A. R., Chaves Ribeiro, A. E., Gondim, Í. C., Alves Dos Santos, E., Resende De Oliveira, É., Mendes Coutinho, G. S., Soares Júnior, M. S., & Caliari, M. (2021). Isolation and Characterization of Yam (Dioscorea Alata L.) Starch From Brazil. Lwt, 149(May). https://doi.org/10.1016/J.Lwt.2021.111843

    Pérez, J., Arteaga, M., Andrade, R., Durango, A., & Salcedo, J. (2021). Effect of Yam (Dioscorea Spp.) Starch on The Physicochemical, Rheological, and Sensory Properties of Yogurt. Heliyon, 7(1). https://doi.org/10.1016/J.Heliyon.2021.E05987

    Phothiset, S., & Charoenrein, S. (2007). Morphology and Physicochemical Changes an Rice Flour During Rice Paper Production. Food Research International, 40(2), 266–272. https://doi.org/10.1016/J.Foodres.2006.06.002

    Srikaeo, K., Laothongsan, P., & Lerdluksamee, C. (2018). Effects of Gums on Physical Properties, Microstructure and Starch Digestibility of Dried-Natural Fermented Rice Noodles. International Journal of Biological Macromolecules, 109, 517–523. https://doi.org/10.1016/J.Ijbiomac.2017.12.121

    Wang, P., Shan, N., Ali, A., Sun, J., Luo, S., Xiao, Y., Wang, S., Hu, R., Huang, Y., & Zhou, Q. (2022). Comprehensive Evaluation of Functional Components, Biological Activities, and Minerals of Yam Species (Dioscorea Polystachya and D. Alata) From China. Lwt, 168(September), 113964. https://doi.org/10.1016/J.Lwt.2022.113964

    Ye, F., Xiao, L., Liang, Y., Zhou, Y., & Zhao, G. (2019). Spontaneous Fermentation Tunes The Physicochemical Properties of Sweet Potato Starch by Modifying The Structure of Starch Molecules. Carbohydrate Polymers, 213 (February), 79–88. https://doi.org/10.1016/J.Carbpol.2019.02.077