Main Article Content

Abstract

Poor antimicrobial stewardship in livestock farms will lead to the emergence of bacterial resistance to antibiotics. Dug wells as a water source and waste disposal on livestock farms have a close distance, allowing transmission of Escherichia coli-resistant bacteria through soil absorption and fecal contamination. This study aims to isolate Escherichia coli from water sources and livestock waste disposal in East Lombok Regency and determine their sensitivity to several antibiotics. The type of this research is a descriptive cross-sectional survey using four water wells and four waste disposals with a criterion of < 10m range. Escherichia coli bacteria were isolated using culture techniques on Eosin Methylene Blue Agar, and identification was carried out using gram staining and biochemical tests. Determining sensitivity to antibiotics was performed using the Kirby-Bauer disk-diffusion method. The results showed that Escherichia coli bacteria have been isolated from water sources and waste disposal on livestock farms in East Lombok Regency. 100 % Escherichia coli isolates sensitive to Gentamicin, Ciprofloxacin, and Cefotaxime. 87.5% Escherichia coli isolates sensitive to Oxytetracycline, 12.5% ​​Escherichia coli isolates resistant to Oxytetracycline, 100% Escherichia coli isolates resistant to Penicillin G. Escherichia coli bacteria isolated from water sources and waste disposal at a livestock farm in East Lombok.

Article Details

How to Cite
Antibiotic Resistance in Escherichia Coli Bacteria Isolated from Water Sources and Waste Disposal in Livestock Farms in East Lombok. (2023). Jurnal Sain Peternakan Indonesia, 18(4), 235–241. Retrieved from https://ejournal.unib.ac.id/jspi/article/view/30661

References

    Aminuddi, S.P., S.B. Alpian., P. Dita. 2020. Identification of Gram-negative Bacteria of Bali Cattle with Repeat Breeding Cases on East Lombok, West Nusa Tenggara Province. Journal of Physics: Conference Series 1430, 1, 012013. DOI: https://doi.org/10.1088/1742-6596/1430/1/012013.
    Brenner, Don J., N,R. Krieg., and J.R. Staley. 2007. Bergey. Springer Science & Business Media.
    Cornelissen, C.N., R.A. Harvey., and B.D. Fisher. 2012. Microbiology. Lippincott Williams & Wilkins.
    Clinical and Laboratory Standards Institute (CLSI). 2015. M100-S24: Performance Standards for Antimicrobial Susceptibility . Retrieved October 25, 2023 from https://www.researchgate.net/file.PostFileLoader.html?id=59202a0696b7e4d462166956&assetKey=AS%3A496054988533760%401495280134033
    Cordero, J,, C. Alonso-Calleja., C. García-Fernández, and R. Capita. 2019. Microbial Load and Antibiotic Resistance Patterns of Escherichia coli and Enterococcus faecalis Isolates from the Meat of Wild and Domestic Pigeons. Foods 8(11): 536. DOI: https://doi.org/10.3390/foods8110536
    EFSA Panel on Biological Hazards (BIOHAZ). 2011. Scientific Opinion on the Public Health Risks of Bacterial Strains Producing Extended‐Spectrum β‐Lactamases and/or AmpC β‐Lactamases in Food and Food‐Producing Animals. EFSA Journal, 9(8): 2322. https://doi.org/10.2903/j.efsa.2011.2322
    Franz, E., C. Veenman., Angela H. A. M. Van Hoek, Ana de Roda Husman, and H. Blaak. 2015. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Scientific Reports 5(1). DOI: https://doi.org/10.1038/srep14372
    Haberecht, H.B., N.J. Nealon., J.R. Gilliland., A.V. Holder., C. Runyan., R.C. Oppel., H.M. Ibrahim., L. Mueller., F.Schrupp., S. Vilchez., L. Antony., J. Scaria., and E.P. Ryan. 2019. Antimicrobial-ResistantEscherichia colifrom Environmental Waters in Northern Colorado. Journal of Environmental and Public Health 2019, 1-13. DOI: https://doi.org/10.1155/2019/3862949
    Hartinger, S.M., M.L. Medina-Pizzali., G. Salmon-Mulanovich., A.J. Larson., M. Pinedo-Bardales., H. Verastegui., M. Riberos, and D. Mäusezahl. 2021. Antimicrobial Resistance in Humans, Animals, Water and Household Environs in Rural Andean Peru: Exploring Dissemination Pathways through the One Health Lens. International Journal of Environmental Research and Public Health 18:(9): 4604. DOI: https://doi.org/10.3390/ijerph18094604
    Huang, Lu., Y. Xu., J. Xu., J. Ling., L. Zheng., X. Zhou, and G. Xie. 2019. Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. International Biodeterioration & Biodegradation 138: 114-121. DOI: https://doi.org/10.1016/j.ibiod.2019.01.009
    Kamaruzzaman, E,A., S. A. Aziz., A. A. Bitrus., Z. Zakaria., and L. Hassan. 2020. Occurrence and Characteristics of Extended-Spectrum β-Lactamase-Producing Escherichia coli from Dairy Cattle, Milk, and Farm Environments in Peninsular Malaysia. Pathogens 9(12):1007. DOI: https://doi.org/10.3390/pathogens9121007
    Kholik, K. 2023. DETECTION OF ANTIBIOTIC RESISTANT IN Escherichia coli FROM THE REPRODUCTIVE TRACT OF BALI CATTLE ON SMALLHOLDER FARM. Jurnal Biosains Pascasarjana 24(1): 44-53. DOI: https://doi.org/10.20473/jbp.v24i1sp.2022.44-53
    Kholik, K., M. Munawaroh., M. R. I. Saputra., R. Rahmawati., and P. Srianto. 2021. Antibiotic Resistance in Escherichia coli Isolated from Feces of Bali Cattle With Reproductive Disorders. Jurnal Biodjati 6(2): 303-311. DOI: https://doi.org/10.15575/biodjati.v6i2.13925
    Martin, S. W., A.H. Meek., and P. Willeberg. 1987. Veterinary Epidemiology. Iowa State Press.
    Mashur, M., M.R. Bilad., K. Kholik., M. Munawaroh., Q.Cheok., N. Huda., and R. Kobun. 2022. The Sustainability and Development Strategy of a Cattle Feed Bank: A Case Study. Sustainability 14 (13): 7989. DOI: https://doi.org/10.3390/su14137989
    Norafika., N. Arbianti., S. Prihatiningsih., D.W. Indriani., and D.W. Indriati. 2020. A retrospective cross-sectional study of urinary tract infections and prevalence of antibiotic resistant pathogens in patients with diabetes mellitus from a public hospital in Surabaya, Indonesia. Germs 10(3):157-166. DOI: https://doi.org/10.18683/germs.2020.1201
    Odonkor. S.T. and J. K. Ampofo. 2013. Escherichia coli as an indicator of bacteriological quality of water: an overview. Microbiology Research 4(1): 2. DOI: https://doi.org/10.4081/mr.2013.e2
    O'Neill, J. 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Retrieved from https://apo.org.au/node/63983.
    Paterson, D.L., R.A. Bonomo. 2005. Extended-spectrum Beta-Lactamases: A clinical Update. Clinical Microbiology Review, 18(4): 657-686. https://doi.org/10.1128/cmr.18.4.657-686.2005
    Siswanto, S., I.N. Sulabda. (2018). Tetracycline and Penicillin Antibiotic Residues in Bali Beef Which Are Traded in Several Markets in Bali. Jurnal Veteriner, 19(4) 497-501.
    https://ojs.unud.ac.id/index.php/jvet/article/view/29616.
    Tasyakusuma, L.P., K. Kholik., M. Janah., A.L.D. Agustin, and S.E. Rahmawati. 2023. PHENOTYPIC DETECTION OF Escherichia coli PRODUCING Extended Spectrum Beta Lactamases (ESBLs) IN THE REPRODUCTIVE TRACT BALI COW. Jurnal Biosains Pascasarjana 24(1):64-73. DOI: https://doi.org/10.20473/jbp.v24i1sp.2022.64-73
    Van Duin, D., Y, Doi. 2017. The Global Epidemiology of Carbapenemase-Producing Enterobacteriaceae. Virulence, 8(4): 460-469. https://doi.org/10.1080/21505594.2016.1222343
    Vandeppitte, J., J. Verhaegen., K. Engbaek., P. Rohner., P. Piot., C. Heuck. 1991. Basic Laboratory Procedures in Clinical Bacteriology. WHO. Geneva, Switzerland.
    World Health Organization (WHO). 2021. Antimicrobial Resistance. Retrieved from https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.
    Woolhouse, M., M. Ward., B. van Bunnik., J. Farrar. 2015. Antimicrobial Resistance in Humans, Livestock and the Wider Environment. Philos Trans R Soc Lond B Biol Sci, 370(1670): 20140083. https://doi.org/10.1098/rstb.2014.0083