Main Article Content
Abstract
A complicated endocrine condition that affects many women worldwide is called polycystic ovarian syndrome, or PCOS. The use of rat models has greatly aided research on many facets of PCOS. In addition to discussing the parameters, evaluation techniques, and indicators pertinent to PCOS research, this study evaluates the standard circumstances of PCOS rat models. Our knowledge of PCOS has improved due to investigating endocrine, hormonal, inflammatory, oxidative stress, metabolic, genetic, and microbiota-related factors in these models. The results highlight how important it is to use PCOS rat models to understand the complexities of this illness and offer possible treatment avenues.
Keywords
Article Details
Copyright (c) 2023 Jurnal Sain Peternakan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The author who submits the manuscript must understand and agree that Jurnal Sain Peternakan Indonesia holds the copyrights published. Copyright includes rights to reproduce, distribute and sell every part of journal articles in all forms and media. This is a copyright transfer form (Download) signed by the corresponding author.
All articles published in Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows:
• Creative Commons Attribution-ShareAlike (CC BY-SA)
Jurnal Sain Peternakan Indonesia is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms if you follow the license terms.
References
- Asghari, R., Shokri-Asl, V., Rezaei, H., Tavallaie, M., Khafaei, M., Abdolmaleki, A., Majdi Seghinsara, A., 2021. Alteration of TGFB1, GDF9, and BMPR2 gene expression in preantral follicles of an estradiol valerate-induced polycystic ovary mouse model can lead to anovulation, polycystic morphology, obesity, and absence of hyperandrogenism. Clin Exp Reprod Med 48, 245–254. https://doi.org/10.5653/cerm.2020.04112
- Binder, A.K., Peecher, D.L., Qvigstad, A.J., Gutierrez, S.D., Magaña, J., Banks, D.B., Korach, K.S., 2023. Differential Strain-dependent Ovarian and Metabolic Responses in a Mouse Model of PCOS. Endocrinology 164. https://doi.org/10.1210/endocr/bqad024
- Bourgneuf, C., Bailbé, D., Lamazière, A., Dupont, C., Moldes, M., Farabos, D., Roblot, N., Gauthier, C., Mathieu d’Argent, E., Cohen-Tannoudji, J., Monniaux, D., Fève, B., Movassat, J., di Clemente, N., Racine, C., 2021. The Goto-Kakizaki rat is a spontaneous prototypical rodent model of polycystic ovary syndrome. Nature Communications 2021 12:1 12, 1–17. https://doi.org/10.1038/s41467-021-21308-y
- Cara, A.L., Burger, L.L., Beekly, B.G., Allen, S.J., Henson, E.L., Auchus, R.J., Myers, M.G., Moenter, S.M., Elias, C.F., 2023. Deletion of Androgen Receptor in LepRb Cells Improves Estrous Cycles in Prenatally Androgenized Mice. Endocrinology 164. https://doi.org/10.1210/endocr/bqad015
- Chaudhari, A.P., Mazumdar, K., Mehta, P.D., 2018. Anxiety, Depression, and Quality of Life in Women with Polycystic Ovarian Syndrome. Indian J Psychol Med 40, 239–246. https://doi.org/10.4103/IJPSYM.IJPSYM_561_17
- Chu, W., Zhai, J., Xu, J., Li, S., Li, W., Chen, Z.J., Du, Y., 2020. Continuous Light-Induced PCOS-Like Changes in Reproduction, Metabolism, and Gut Microbiota in Sprague-Dawley Rats. Front Microbiol 10, 1–13. https://doi.org/10.3389/FMICB.2019.03145
- Ding, Y., Jiang, Z., Xia, B., Zhang, L., Zhang, C., Leng, J., 2019. Mitochondria-targeted antioxidant therapy for an animal model of PCOS-IR. Int J Mol Med 43, 316–324. https://doi.org/10.3892/ijmm.2018.3977
- Esparza, L.A., Schafer, D., Ho, B.S., Thackray, V.G., Kauffman, A.S., 2020. Hyperactive LH pulses and elevated kisspeptin and NKB gene expression in the arcuate nucleus of a PCOS mouse model. Endocrinology 161, bqaa018. https://doi.org/10.1210/endocr/bqaa018
- Gede Dian S, N.L., Norahmawati, E., Jannah, M., 2022. Pengaruh Pemberian Ekstrak Etanol Biji Pepaya (Carica papaya L.) terhadap Jumlah Folikel Preantral, Antral dan Berat Ovarium Tikus Putih Betina (Rattus norvegicus) Galur Wistar. Journal of Issues in Midwifery 6, 63–75. https://doi.org/10.21776/UB.JOIM.2022.006.02.1
- Hakam Maulidy, W., Mustika, A., Safitri Mukono, I., 2022. The Effect of Butterfly Pea (Clitoria Ternatea) Extract on Reducing Total Cholesterol Levels in Rattus norvegicus with the Hypercholesterolemia Model. International Journal of Research Publications 115. https://doi.org/10.47119/IJRP10011511220224349
- Hedrich, H.J., 2000. History, Strains and Models. The Laboratory Rat 3–16. https://doi.org/10.1016/B978-012426400-7.50040-6
- Ibrahim, Y.F., Alorabi, M., Abdelzaher, W.Y., Toni, N.D., Thabet, K., Hegazy, A.R., Bahaa, H.A., Batiha, G.E.S., Welson, N.N., Morsy, M.A., Venugopala, K.N., Abdel-Aziz, A.M., 2022. Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomedicine and Pharmacotherapy 149. https://doi.org/10.1016/J.BIOPHA.2022.112870
- Kim, E.-J., Jang, M., Choi, J.H., Park, K.S., 2018. An Improved Dehydroepiandrosterone-Induced Rat Model of Polycystic Ovary Syndrome (PCOS): Post-pubertal Improve PCOS’s Features. Frontiers in Endocrinology | www.frontiersin.org 9, 735. https://doi.org/10.3389/fendo.2018.00735
- Koçak, S., 2021. PCOS Animal Models: An Approach Induced By Dehydroepiandrosterone. Experimental and Applied Medical Science 2, 136–145. https://doi.org/10.46871/eams.2021.17
- Leonie, E., Van Houten, A.F., Kramer, P., McLuskey, A., Karels, B., Themmen, A.P.N., Visser, J.A., 2012. Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology 153, 2861–2869. https://doi.org/10.1210/en.2011-1754
- Linares, R., Rosas, G., Vieyra, E., Ramírez, D.A., Velázquez, D.R., Espinoza, J.A., Morán, C., Domínguez, R., Morales-Ledesma, L., 2019. In Adult Rats With Polycystic Ovarian Syndrome, Unilateral or Bilateral Vagotomy Modifies the Noradrenergic Concentration in the Ovaries and the Celiac Superior Mesenteric Ganglia in Different Ways. Front Physiol 10. https://doi.org/10.3389/FPHYS.2019.01309
- Marshall, C.J., Prescott, M., Campbell, R.E., 2020. Investigating the NPY/AgRP/GABA to GnRH neuron circuit in prenatally androgenized PCOS-like mice. J Endocr Soc 4, 1–12. https://doi.org/10.1210/JENDSO/BVAA129
- Modlinska, K., Pisula, W., 2020. The natural history of model organisms the norway rat, from an obnoxious pest to a laboratory pet. Elife 9. https://doi.org/10.7554/ELIFE.50651
- Monima, L.A., Buhari, M., Lawal, S., Isaac, E., Fred, S., Elna, O., Edmund, B., Diaz, M.E.F., Bassey, A.V., Ikwap, K., 2019. Effect of Cleome gynandra leaf extract on the estrous cycle and histology of the ovary and uterus of wistar albino rats. Anatomy Journal of Africa 8, 1385–1394. https://doi.org/10.4314/aja.v8i1.182619
- Mvondo, M.A., Mzemdem Tsoplfack, F.I., Awounfack, C.F., Njamen, D., 2020. The leaf aqueous extract of Myrianthus arboreus P. Beauv. (Cecropiaceae) improved letrozole-induced polycystic ovarian syndrome associated conditions and infertility in female Wistar rats. BMC Complement Med Ther 20, 1–13. https://doi.org/10.1186/S12906-020-03070-8/TABLES/4
- Olson, E., Graham, D., 2014. Animal Models in Pharmacogenomics. Handbook of Pharmacogenomics and Stratified Medicine 73–87. https://doi.org/10.1016/B978-0-12-386882-4.00005-0
- Osuka, S., Nakanishi, N., Murase, T., Nakamura, T., Goto, M., Iwase, A., Kikkawa, F., 2019. Animal models of polycystic ovary syndrome: A review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides. Reprod Med Biol 18, 151–160. https://doi.org/10.1002/RMB2.12262
- Palmerini, M.G., Macchiarelli, G., Cocciolone, D., Mascitti, I.A., Placidi, M., Vergara, T., Di Emidio, G., Tatone, C., 2023. Modulating Morphological and Redox/Glycative Alterations in the PCOS Uterus: Effects of Carnitines in PCOS Mice. Biomedicines 11. https://doi.org/10.3390/BIOMEDICINES11020374
- Rakic, D., Jovic, J.J., Jakovljevic, V., Zivkovic, V., Nikolic, Maja, Sretenovic, J., Nikolic, Marina, Jovic, N., Bicanin Ilic, M., Arsenijevic, P., Dimitrijevic, A., Vulovic, T., Ristic, N., Bulatovic, K., Bolevich, S., Stijak, L., Pantovic, S., 2023. High Fat Diet Exaggerate Metabolic and Reproductive PCOS Features by Promoting Oxidative Stress: An Improved EV Model in Rats. Medicina (B Aires) 59, 1104. https://doi.org/10.3390/medicina59061104
- Ryu, K.J., Park, H., Han, Y.I., Lee, H.J., Nam, S., Jeong, H.G., Kim, T., 2023. Effects of time-restricted feeding on letrozole-induced mouse model of polycystic ovary syndrome. Scientific Reports 2023 13:1 13, 1–9. https://doi.org/10.1038/s41598-023-28260-5
- Sadeghian Bakhi, E., Hayati Roodbari, N., Anvari, M., Ramezani Tehrani, F., 2023. Prenatal kisspeptin antagonist exposure prevents polycystic ovary syndrome development in prenatally-androgenized rats in adulthood: An experimental study. Int J Reprod Biomed 21, 99–110. https://doi.org/10.18502/ijrm.v21i2.12801
- Siahaan, S.C.P.T., Santoso, B., Widjiati, 2022. Effectiveness of Moringa oleifera Leaves on TNF-α Expression, Insulin Levels, Glucose Levels and Follicle Count in Rattus norvegicus PCOS Model. Diabetes, Metabolic Syndrome and Obesity 15, 3255–3270. https://doi.org/10.2147/DMSO.S385492
- Simon, M.M., Greenaway, S., White, J.K., Fuchs, H., Gailus-Durner, V., 2013. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14. https://doi.org/10.1186/GB-2013-14-7-R82
- Sudhakar, P., Kothai, R., Thenmozhi, V., 2019. Development of an animal model for Polycystic Ovarian Syndrome in relation to reproductive and metabolic phenotype. Journal of Pharmaceutical Sciences and Research 11, 2827–2832.
- Talakua, F.C., Unitly, A.J.A., 2020. EFEK PEMBERIAN EKSTRAK ETANOL RUMPUT KEBAR (Bhiophytum petersianum Klotzsch) TERHADAP PENINGKATAN JUMLAH FOLIKEL PADA OVARIUM TIKUS Rattus norvegicus TERPAPAR ASAP ROKOK. Biofaal Journal 1, 74–84. https://doi.org/10.30598/BIOFAAL.V1I2PP74-84
- Ullah, A., Wang, M.J., Yang, J.P., Adu-Gyamfi, E.A., Czika, A., Sah, S.K., Feng, Q., Wang, Y.X., 2022. Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model. Reprod Biomed Online 44, 791–802. https://doi.org/10.1016/j.rbmo.2021.10.024
- Walters, K.A., Bertoldo, M.J., Handelsman, D.J., 2018. Evidence from animal models on the pathogenesis of PCOS. Best Pract Res Clin Endocrinol Metab 32, 271–281. https://doi.org/10.1016/j.beem.2018.03.008
- Wang, Lan, Zhou, J., Gober, H.J., Leung, W.T., Huang, Z., Pan, X., Li, C., Zhang, N., Wang, Ling, 2021. Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype. Biomedicine and Pharmacotherapy 133. https://doi.org/10.1016/j.biopha.2020.110958
- Wang, M.X., Yin, Q., Xu, X., 2020. A rat model of polycystic ovary syndrome with insulin resistance induced by letrozole combined with high fat diet. Medical Science Monitor 26. https://doi.org/10.12659/MSM.922136
- Wang, X., Gu, L., Zhang, Y., Xiong, C., Peng, Y., Ding, X., 2022. Effects of dehydroepiandrosterone alone or in combination with a high-fat diet and antibiotic cocktail on the heterogeneous phenotypes of PCOS mouse models by regulating gut microbiota. Front Endocrinol (Lausanne) 13, 1030151. https://doi.org/10.3389/fendo.2022.1030151
- Zhang, Y., Wang, Lei, Weng, Y., Wang, D., Wang, R., Wang, H., Wang, Lihui, Shen, S., Wang, H., Li, Y., Wang, Y., 2022. Curcumin Inhibits Hyperandrogen-Induced IRE1 α -XBP1 Pathway Activation by Activating the PI3K/AKT Signaling in Ovarian Granulosa Cells of PCOS Model Rats. Oxid Med Cell Longev 2022. https://doi.org/10.1155/2022/2113293
- Zhou, D. ni, Li, S. jiao, Ding, J. li, Yin, T. lang, Yang, J., Ye, H., 2018. MIF May Participate in Pathogenesis of Polycystic Ovary Syndrome in Rats through MAPK Signalling Pathway. Curr Med Sci 38, 853–860. https://doi.org/10.1007/s11596-018-1953-7
References
Asghari, R., Shokri-Asl, V., Rezaei, H., Tavallaie, M., Khafaei, M., Abdolmaleki, A., Majdi Seghinsara, A., 2021. Alteration of TGFB1, GDF9, and BMPR2 gene expression in preantral follicles of an estradiol valerate-induced polycystic ovary mouse model can lead to anovulation, polycystic morphology, obesity, and absence of hyperandrogenism. Clin Exp Reprod Med 48, 245–254. https://doi.org/10.5653/cerm.2020.04112
Binder, A.K., Peecher, D.L., Qvigstad, A.J., Gutierrez, S.D., Magaña, J., Banks, D.B., Korach, K.S., 2023. Differential Strain-dependent Ovarian and Metabolic Responses in a Mouse Model of PCOS. Endocrinology 164. https://doi.org/10.1210/endocr/bqad024
Bourgneuf, C., Bailbé, D., Lamazière, A., Dupont, C., Moldes, M., Farabos, D., Roblot, N., Gauthier, C., Mathieu d’Argent, E., Cohen-Tannoudji, J., Monniaux, D., Fève, B., Movassat, J., di Clemente, N., Racine, C., 2021. The Goto-Kakizaki rat is a spontaneous prototypical rodent model of polycystic ovary syndrome. Nature Communications 2021 12:1 12, 1–17. https://doi.org/10.1038/s41467-021-21308-y
Cara, A.L., Burger, L.L., Beekly, B.G., Allen, S.J., Henson, E.L., Auchus, R.J., Myers, M.G., Moenter, S.M., Elias, C.F., 2023. Deletion of Androgen Receptor in LepRb Cells Improves Estrous Cycles in Prenatally Androgenized Mice. Endocrinology 164. https://doi.org/10.1210/endocr/bqad015
Chaudhari, A.P., Mazumdar, K., Mehta, P.D., 2018. Anxiety, Depression, and Quality of Life in Women with Polycystic Ovarian Syndrome. Indian J Psychol Med 40, 239–246. https://doi.org/10.4103/IJPSYM.IJPSYM_561_17
Chu, W., Zhai, J., Xu, J., Li, S., Li, W., Chen, Z.J., Du, Y., 2020. Continuous Light-Induced PCOS-Like Changes in Reproduction, Metabolism, and Gut Microbiota in Sprague-Dawley Rats. Front Microbiol 10, 1–13. https://doi.org/10.3389/FMICB.2019.03145
Ding, Y., Jiang, Z., Xia, B., Zhang, L., Zhang, C., Leng, J., 2019. Mitochondria-targeted antioxidant therapy for an animal model of PCOS-IR. Int J Mol Med 43, 316–324. https://doi.org/10.3892/ijmm.2018.3977
Esparza, L.A., Schafer, D., Ho, B.S., Thackray, V.G., Kauffman, A.S., 2020. Hyperactive LH pulses and elevated kisspeptin and NKB gene expression in the arcuate nucleus of a PCOS mouse model. Endocrinology 161, bqaa018. https://doi.org/10.1210/endocr/bqaa018
Gede Dian S, N.L., Norahmawati, E., Jannah, M., 2022. Pengaruh Pemberian Ekstrak Etanol Biji Pepaya (Carica papaya L.) terhadap Jumlah Folikel Preantral, Antral dan Berat Ovarium Tikus Putih Betina (Rattus norvegicus) Galur Wistar. Journal of Issues in Midwifery 6, 63–75. https://doi.org/10.21776/UB.JOIM.2022.006.02.1
Hakam Maulidy, W., Mustika, A., Safitri Mukono, I., 2022. The Effect of Butterfly Pea (Clitoria Ternatea) Extract on Reducing Total Cholesterol Levels in Rattus norvegicus with the Hypercholesterolemia Model. International Journal of Research Publications 115. https://doi.org/10.47119/IJRP10011511220224349
Hedrich, H.J., 2000. History, Strains and Models. The Laboratory Rat 3–16. https://doi.org/10.1016/B978-012426400-7.50040-6
Ibrahim, Y.F., Alorabi, M., Abdelzaher, W.Y., Toni, N.D., Thabet, K., Hegazy, A.R., Bahaa, H.A., Batiha, G.E.S., Welson, N.N., Morsy, M.A., Venugopala, K.N., Abdel-Aziz, A.M., 2022. Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomedicine and Pharmacotherapy 149. https://doi.org/10.1016/J.BIOPHA.2022.112870
Kim, E.-J., Jang, M., Choi, J.H., Park, K.S., 2018. An Improved Dehydroepiandrosterone-Induced Rat Model of Polycystic Ovary Syndrome (PCOS): Post-pubertal Improve PCOS’s Features. Frontiers in Endocrinology | www.frontiersin.org 9, 735. https://doi.org/10.3389/fendo.2018.00735
Koçak, S., 2021. PCOS Animal Models: An Approach Induced By Dehydroepiandrosterone. Experimental and Applied Medical Science 2, 136–145. https://doi.org/10.46871/eams.2021.17
Leonie, E., Van Houten, A.F., Kramer, P., McLuskey, A., Karels, B., Themmen, A.P.N., Visser, J.A., 2012. Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology 153, 2861–2869. https://doi.org/10.1210/en.2011-1754
Linares, R., Rosas, G., Vieyra, E., Ramírez, D.A., Velázquez, D.R., Espinoza, J.A., Morán, C., Domínguez, R., Morales-Ledesma, L., 2019. In Adult Rats With Polycystic Ovarian Syndrome, Unilateral or Bilateral Vagotomy Modifies the Noradrenergic Concentration in the Ovaries and the Celiac Superior Mesenteric Ganglia in Different Ways. Front Physiol 10. https://doi.org/10.3389/FPHYS.2019.01309
Marshall, C.J., Prescott, M., Campbell, R.E., 2020. Investigating the NPY/AgRP/GABA to GnRH neuron circuit in prenatally androgenized PCOS-like mice. J Endocr Soc 4, 1–12. https://doi.org/10.1210/JENDSO/BVAA129
Modlinska, K., Pisula, W., 2020. The natural history of model organisms the norway rat, from an obnoxious pest to a laboratory pet. Elife 9. https://doi.org/10.7554/ELIFE.50651
Monima, L.A., Buhari, M., Lawal, S., Isaac, E., Fred, S., Elna, O., Edmund, B., Diaz, M.E.F., Bassey, A.V., Ikwap, K., 2019. Effect of Cleome gynandra leaf extract on the estrous cycle and histology of the ovary and uterus of wistar albino rats. Anatomy Journal of Africa 8, 1385–1394. https://doi.org/10.4314/aja.v8i1.182619
Mvondo, M.A., Mzemdem Tsoplfack, F.I., Awounfack, C.F., Njamen, D., 2020. The leaf aqueous extract of Myrianthus arboreus P. Beauv. (Cecropiaceae) improved letrozole-induced polycystic ovarian syndrome associated conditions and infertility in female Wistar rats. BMC Complement Med Ther 20, 1–13. https://doi.org/10.1186/S12906-020-03070-8/TABLES/4
Olson, E., Graham, D., 2014. Animal Models in Pharmacogenomics. Handbook of Pharmacogenomics and Stratified Medicine 73–87. https://doi.org/10.1016/B978-0-12-386882-4.00005-0
Osuka, S., Nakanishi, N., Murase, T., Nakamura, T., Goto, M., Iwase, A., Kikkawa, F., 2019. Animal models of polycystic ovary syndrome: A review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides. Reprod Med Biol 18, 151–160. https://doi.org/10.1002/RMB2.12262
Palmerini, M.G., Macchiarelli, G., Cocciolone, D., Mascitti, I.A., Placidi, M., Vergara, T., Di Emidio, G., Tatone, C., 2023. Modulating Morphological and Redox/Glycative Alterations in the PCOS Uterus: Effects of Carnitines in PCOS Mice. Biomedicines 11. https://doi.org/10.3390/BIOMEDICINES11020374
Rakic, D., Jovic, J.J., Jakovljevic, V., Zivkovic, V., Nikolic, Maja, Sretenovic, J., Nikolic, Marina, Jovic, N., Bicanin Ilic, M., Arsenijevic, P., Dimitrijevic, A., Vulovic, T., Ristic, N., Bulatovic, K., Bolevich, S., Stijak, L., Pantovic, S., 2023. High Fat Diet Exaggerate Metabolic and Reproductive PCOS Features by Promoting Oxidative Stress: An Improved EV Model in Rats. Medicina (B Aires) 59, 1104. https://doi.org/10.3390/medicina59061104
Ryu, K.J., Park, H., Han, Y.I., Lee, H.J., Nam, S., Jeong, H.G., Kim, T., 2023. Effects of time-restricted feeding on letrozole-induced mouse model of polycystic ovary syndrome. Scientific Reports 2023 13:1 13, 1–9. https://doi.org/10.1038/s41598-023-28260-5
Sadeghian Bakhi, E., Hayati Roodbari, N., Anvari, M., Ramezani Tehrani, F., 2023. Prenatal kisspeptin antagonist exposure prevents polycystic ovary syndrome development in prenatally-androgenized rats in adulthood: An experimental study. Int J Reprod Biomed 21, 99–110. https://doi.org/10.18502/ijrm.v21i2.12801
Siahaan, S.C.P.T., Santoso, B., Widjiati, 2022. Effectiveness of Moringa oleifera Leaves on TNF-α Expression, Insulin Levels, Glucose Levels and Follicle Count in Rattus norvegicus PCOS Model. Diabetes, Metabolic Syndrome and Obesity 15, 3255–3270. https://doi.org/10.2147/DMSO.S385492
Simon, M.M., Greenaway, S., White, J.K., Fuchs, H., Gailus-Durner, V., 2013. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14. https://doi.org/10.1186/GB-2013-14-7-R82
Sudhakar, P., Kothai, R., Thenmozhi, V., 2019. Development of an animal model for Polycystic Ovarian Syndrome in relation to reproductive and metabolic phenotype. Journal of Pharmaceutical Sciences and Research 11, 2827–2832.
Talakua, F.C., Unitly, A.J.A., 2020. EFEK PEMBERIAN EKSTRAK ETANOL RUMPUT KEBAR (Bhiophytum petersianum Klotzsch) TERHADAP PENINGKATAN JUMLAH FOLIKEL PADA OVARIUM TIKUS Rattus norvegicus TERPAPAR ASAP ROKOK. Biofaal Journal 1, 74–84. https://doi.org/10.30598/BIOFAAL.V1I2PP74-84
Ullah, A., Wang, M.J., Yang, J.P., Adu-Gyamfi, E.A., Czika, A., Sah, S.K., Feng, Q., Wang, Y.X., 2022. Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model. Reprod Biomed Online 44, 791–802. https://doi.org/10.1016/j.rbmo.2021.10.024
Walters, K.A., Bertoldo, M.J., Handelsman, D.J., 2018. Evidence from animal models on the pathogenesis of PCOS. Best Pract Res Clin Endocrinol Metab 32, 271–281. https://doi.org/10.1016/j.beem.2018.03.008
Wang, Lan, Zhou, J., Gober, H.J., Leung, W.T., Huang, Z., Pan, X., Li, C., Zhang, N., Wang, Ling, 2021. Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype. Biomedicine and Pharmacotherapy 133. https://doi.org/10.1016/j.biopha.2020.110958
Wang, M.X., Yin, Q., Xu, X., 2020. A rat model of polycystic ovary syndrome with insulin resistance induced by letrozole combined with high fat diet. Medical Science Monitor 26. https://doi.org/10.12659/MSM.922136
Wang, X., Gu, L., Zhang, Y., Xiong, C., Peng, Y., Ding, X., 2022. Effects of dehydroepiandrosterone alone or in combination with a high-fat diet and antibiotic cocktail on the heterogeneous phenotypes of PCOS mouse models by regulating gut microbiota. Front Endocrinol (Lausanne) 13, 1030151. https://doi.org/10.3389/fendo.2022.1030151
Zhang, Y., Wang, Lei, Weng, Y., Wang, D., Wang, R., Wang, H., Wang, Lihui, Shen, S., Wang, H., Li, Y., Wang, Y., 2022. Curcumin Inhibits Hyperandrogen-Induced IRE1 α -XBP1 Pathway Activation by Activating the PI3K/AKT Signaling in Ovarian Granulosa Cells of PCOS Model Rats. Oxid Med Cell Longev 2022. https://doi.org/10.1155/2022/2113293
Zhou, D. ni, Li, S. jiao, Ding, J. li, Yin, T. lang, Yang, J., Ye, H., 2018. MIF May Participate in Pathogenesis of Polycystic Ovary Syndrome in Rats through MAPK Signalling Pathway. Curr Med Sci 38, 853–860. https://doi.org/10.1007/s11596-018-1953-7