Main Article Content

Abstract

The Tumor Protein P53 Inducible Nuclear Protein 1 (TP53INP1) gene is expected to be a crucial candidate for mineral content.  This research aimed to analyse the genotype polymorphism and investigate its association with the TP53INP1 gene and sheep mineral content. To analyse gene polymorphisms and conduct an association study, 30 rams of Javanese thin-tailed sheep were utilised. The NlaIII restriction enzyme was applied to investigate the genotype polymorphism of the TP53INP1 gene through Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Regarding the association with analysing TP53INP1, a General Linear Model (GLM) was used. The findings indicate that the TP53INP1 gene shows polymorphism, revealing three distinct genotypes identified by the results: AA, AG, and GG. The genotypes were detected using the Hardy-Weinberg Equilibrium (HWE) principle. According to the association analysis, a significant association (P < 0.05) was found between the TP53INP1 gene and mineral content, particularly iron (Fe). A higher mineral content was associated with the GG genotype, whereas a lower mineral content was related to the AA genotype. The TP53INP1 could be the candidate gene for sheep's mineral content.

Keywords

TP53INP1 Indonesian sheep mineral content PCR-RFLP

Article Details

How to Cite
Listyarini, K., Harahap, R. S., Roosita, K., Sumantri, C., Mulyono, R. H., & Gunawan, A. (2025). Association of Genetic Polymorphism TP53INP1 Gene with Mineral Content in Javanese Thin-Tailed Sheep. Jurnal Sain Peternakan Indonesia, 20(2), 88–93. https://doi.org/10.31186/jspi.id.20.2.88-93

References

    Andrews, N. C. 2005. Molecular control of iron metabolism. Best Pract. Res. Clin. Haematol, 18(2), 159-169 https://doi.org/10.1016/j.beha.2004.10.004.

    Baba, W. N., Rasool, N., Selvamuthukumara, M., & Maqsood, S. 2021. A review on nutritional composition, health benefits, and technological interventions for improving consumer acceptability of camel meat: an ethnic food of Middle East. J. Ethn. Foods, 8(18), 1-13. https://doi.org/10.1186/s42779-021-00089-1

    Dinh, E., Rival, T., Carrier, A., Asfogo, N., Corti, O., Melon, C., Salin, P., Lortet, S., Goff, L. K-L. 2021. TP53INP1 exerts neuroprotection under ageing and Parkinson’s disease-related stress condition. Cell Death Dis, 12, 460. https://doi.org/10.1038/s41419-021-03742-4

    Edwards, A. W. F. 2008. GH Hardy (1908) and hardy–weinberg equilibrium. Genetics, 179, 1143-1150. https://doi.org/10.1534/genetics.104.92940

    Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., Garcia, S., Nowak, J., Yeung, M. L., Jeang K-T., Chaix, A., Fazli, L., Motoo, Y., Wang, Q., Rocchi, P., Russo, A., Gleave, M., Dagorn, J-C., Iovanna, J. L., Carrier, A., Pebusque, M-J., & Dusetti, N. J.. 2007. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U.S.A, 104(41), 16170-16175. https://doi.org/10.1073/pnas.0703942104.

    Grotto, H. Z. W. 2008. Metabolismo do ferro: uma revisão sobre os principais
    mecanismos envolvidos em sua homeostase. Revta Bras. Hematol. Hemoter, 30(5), 390-397. https://doi.org/10.1590/S1516-84842008000500012

    Jiang, P. H., Motoo, Y., Garcia, S., Iovanna, J. L., Pébusque, M. J., & Sawabu, N. 2006. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer. World J. Gastroenterol, 12(5), 691-696. https://doi.org/10.3748/wjg.v12.i5.691.

    Mortimer, S. I., van der Werf, J. H. J., Jacob, R. H., Hopkins, D. L., Pannier, L., Pearce, K. L., Gardner, G. E., Warner, R. D., Geesink, G. H., Hocking Edwards, J. E., Ponnampalam, E. N., Ball, A. J., Gilmour, A. R., & Pethrick, D. W. 2014. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci, 96, 1016-1024. https://doi.org/10.1016/j.meatsci.2013.09.007

    Munyaneza, J. P., Gunawan, A., & Noor, R. R. 2019. Identification of single nucleotide polymorphism and association analysis of alpha 2-heremans Schmid glycoprotein (AHSG) gene related to fatty acid traits in sheep. Int. J. Sci. Res. Sci. Tech, 6, 351-360. https://doi.org/10.32628/IJSRST196176

    Nei, M., & Kumar, S. 2000. Moleculear Evolution and Phylogenetics. Oxford University Press, New York.

    Odden, A., Vatn, S., Ruiz, A., Robertson, L. J., Enemark, H. L., Nes, S. K., Tommerberg, V., & Stuen, S. 2018. Excretion of Eimeria spp. oocysts in young lambs following iron supplementation. Acta Vet. Scand, 60, 49. https://doi.org/10.1186/s13028-018-0404-6

    Pannier, L., Ponnampalam, E. N., Gardner, G. E., Hopkins, D. L., Ball, A. J., Jacob, R. H., Pearce, K. L., & Pethick, D. W. 2010. Prime Australian lamb supplies key nutrients for human health. Anim. Prod. Sci, 50(12), 1115-1122. https://doi.org/10.1071/AN10132

    Pethick, D. W., Ball, A. J., Banks, R. G., & Hocquette, J. F. 2011. Current and future issues facing red meat quality in a competitive market and how to manage continuous improvement. Anim. Prod. Sci, 51(1), 13-18. https://doi.org/10.1071/AN10041

    Pethick, D. W., Banks, R. G., Hales, J., & Ross, I. S. 2006. Australian prime lamb – a vision for 2020. International Journal of Sheep and Wool Science, 54, 66-73.

    Shibuya, H., Iinuma, H., Shimada, R., Horiuchi, A., & Watanabe, T. 2010. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology, 79(3-4), 313-320. https://doi.org/10.1159/000323283

    Simabuco, F. M., Morale, M. G., Pavan, I. C. B., Morelli, A. P., Silva, F. R., Tamura, R. E. 2018. p53 and metabolism: from mechanism to therapeutics. Oncotarget, 9(34), 23780-23823. https://doi.org/10.18632/oncotarget.25267.

Most read articles by the same author(s)