Main Article Content
Abstract
The Tumor Protein P53 Inducible Nuclear Protein 1 (TP53INP1) gene is expected to be a crucial candidate for mineral content. This research aimed to analyse the genotype polymorphism and investigate its association with the TP53INP1 gene and sheep mineral content. To analyse gene polymorphisms and conduct an association study, 30 rams of Javanese thin-tailed sheep were utilised. The NlaIII restriction enzyme was applied to investigate the genotype polymorphism of the TP53INP1 gene through Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Regarding the association with analysing TP53INP1, a General Linear Model (GLM) was used. The findings indicate that the TP53INP1 gene shows polymorphism, revealing three distinct genotypes identified by the results: AA, AG, and GG. The genotypes were detected using the Hardy-Weinberg Equilibrium (HWE) principle. According to the association analysis, a significant association (P < 0.05) was found between the TP53INP1 gene and mineral content, particularly iron (Fe). A higher mineral content was associated with the GG genotype, whereas a lower mineral content was related to the AA genotype. The TP53INP1 could be the candidate gene for sheep's mineral content.
Keywords
Article Details
Copyright (c) 2025 Jurnal Sain Peternakan Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The author who submits the manuscript must understand and agree that Jurnal Sain Peternakan Indonesia holds the copyrights published. Copyright includes rights to reproduce, distribute and sell every part of journal articles in all forms and media. This is a copyright transfer form (Download) signed by the corresponding author.
All articles published in Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows:
• Creative Commons Attribution-ShareAlike (CC BY-SA)
Jurnal Sain Peternakan Indonesia is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms if you follow the license terms.
References
-
Andrews, N. C. 2005. Molecular control of iron metabolism. Best Pract. Res. Clin. Haematol, 18(2), 159-169 https://doi.org/10.1016/j.beha.2004.10.004.
Baba, W. N., Rasool, N., Selvamuthukumara, M., & Maqsood, S. 2021. A review on nutritional composition, health benefits, and technological interventions for improving consumer acceptability of camel meat: an ethnic food of Middle East. J. Ethn. Foods, 8(18), 1-13. https://doi.org/10.1186/s42779-021-00089-1
Dinh, E., Rival, T., Carrier, A., Asfogo, N., Corti, O., Melon, C., Salin, P., Lortet, S., Goff, L. K-L. 2021. TP53INP1 exerts neuroprotection under ageing and Parkinson’s disease-related stress condition. Cell Death Dis, 12, 460. https://doi.org/10.1038/s41419-021-03742-4
Edwards, A. W. F. 2008. GH Hardy (1908) and hardy–weinberg equilibrium. Genetics, 179, 1143-1150. https://doi.org/10.1534/genetics.104.92940
Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., Garcia, S., Nowak, J., Yeung, M. L., Jeang K-T., Chaix, A., Fazli, L., Motoo, Y., Wang, Q., Rocchi, P., Russo, A., Gleave, M., Dagorn, J-C., Iovanna, J. L., Carrier, A., Pebusque, M-J., & Dusetti, N. J.. 2007. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U.S.A, 104(41), 16170-16175. https://doi.org/10.1073/pnas.0703942104.
Grotto, H. Z. W. 2008. Metabolismo do ferro: uma revisão sobre os principais
mecanismos envolvidos em sua homeostase. Revta Bras. Hematol. Hemoter, 30(5), 390-397. https://doi.org/10.1590/S1516-84842008000500012
Jiang, P. H., Motoo, Y., Garcia, S., Iovanna, J. L., Pébusque, M. J., & Sawabu, N. 2006. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer. World J. Gastroenterol, 12(5), 691-696. https://doi.org/10.3748/wjg.v12.i5.691.
Mortimer, S. I., van der Werf, J. H. J., Jacob, R. H., Hopkins, D. L., Pannier, L., Pearce, K. L., Gardner, G. E., Warner, R. D., Geesink, G. H., Hocking Edwards, J. E., Ponnampalam, E. N., Ball, A. J., Gilmour, A. R., & Pethrick, D. W. 2014. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci, 96, 1016-1024. https://doi.org/10.1016/j.meatsci.2013.09.007
Munyaneza, J. P., Gunawan, A., & Noor, R. R. 2019. Identification of single nucleotide polymorphism and association analysis of alpha 2-heremans Schmid glycoprotein (AHSG) gene related to fatty acid traits in sheep. Int. J. Sci. Res. Sci. Tech, 6, 351-360. https://doi.org/10.32628/IJSRST196176
Nei, M., & Kumar, S. 2000. Moleculear Evolution and Phylogenetics. Oxford University Press, New York.
Odden, A., Vatn, S., Ruiz, A., Robertson, L. J., Enemark, H. L., Nes, S. K., Tommerberg, V., & Stuen, S. 2018. Excretion of Eimeria spp. oocysts in young lambs following iron supplementation. Acta Vet. Scand, 60, 49. https://doi.org/10.1186/s13028-018-0404-6
Pannier, L., Ponnampalam, E. N., Gardner, G. E., Hopkins, D. L., Ball, A. J., Jacob, R. H., Pearce, K. L., & Pethick, D. W. 2010. Prime Australian lamb supplies key nutrients for human health. Anim. Prod. Sci, 50(12), 1115-1122. https://doi.org/10.1071/AN10132
Pethick, D. W., Ball, A. J., Banks, R. G., & Hocquette, J. F. 2011. Current and future issues facing red meat quality in a competitive market and how to manage continuous improvement. Anim. Prod. Sci, 51(1), 13-18. https://doi.org/10.1071/AN10041
Pethick, D. W., Banks, R. G., Hales, J., & Ross, I. S. 2006. Australian prime lamb – a vision for 2020. International Journal of Sheep and Wool Science, 54, 66-73.
Shibuya, H., Iinuma, H., Shimada, R., Horiuchi, A., & Watanabe, T. 2010. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology, 79(3-4), 313-320. https://doi.org/10.1159/000323283
Simabuco, F. M., Morale, M. G., Pavan, I. C. B., Morelli, A. P., Silva, F. R., Tamura, R. E. 2018. p53 and metabolism: from mechanism to therapeutics. Oncotarget, 9(34), 23780-23823. https://doi.org/10.18632/oncotarget.25267.
References
Baba, W. N., Rasool, N., Selvamuthukumara, M., & Maqsood, S. 2021. A review on nutritional composition, health benefits, and technological interventions for improving consumer acceptability of camel meat: an ethnic food of Middle East. J. Ethn. Foods, 8(18), 1-13. https://doi.org/10.1186/s42779-021-00089-1
Dinh, E., Rival, T., Carrier, A., Asfogo, N., Corti, O., Melon, C., Salin, P., Lortet, S., Goff, L. K-L. 2021. TP53INP1 exerts neuroprotection under ageing and Parkinson’s disease-related stress condition. Cell Death Dis, 12, 460. https://doi.org/10.1038/s41419-021-03742-4
Edwards, A. W. F. 2008. GH Hardy (1908) and hardy–weinberg equilibrium. Genetics, 179, 1143-1150. https://doi.org/10.1534/genetics.104.92940
Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., Garcia, S., Nowak, J., Yeung, M. L., Jeang K-T., Chaix, A., Fazli, L., Motoo, Y., Wang, Q., Rocchi, P., Russo, A., Gleave, M., Dagorn, J-C., Iovanna, J. L., Carrier, A., Pebusque, M-J., & Dusetti, N. J.. 2007. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U.S.A, 104(41), 16170-16175. https://doi.org/10.1073/pnas.0703942104.
Grotto, H. Z. W. 2008. Metabolismo do ferro: uma revisão sobre os principais
mecanismos envolvidos em sua homeostase. Revta Bras. Hematol. Hemoter, 30(5), 390-397. https://doi.org/10.1590/S1516-84842008000500012
Jiang, P. H., Motoo, Y., Garcia, S., Iovanna, J. L., Pébusque, M. J., & Sawabu, N. 2006. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer. World J. Gastroenterol, 12(5), 691-696. https://doi.org/10.3748/wjg.v12.i5.691.
Mortimer, S. I., van der Werf, J. H. J., Jacob, R. H., Hopkins, D. L., Pannier, L., Pearce, K. L., Gardner, G. E., Warner, R. D., Geesink, G. H., Hocking Edwards, J. E., Ponnampalam, E. N., Ball, A. J., Gilmour, A. R., & Pethrick, D. W. 2014. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci, 96, 1016-1024. https://doi.org/10.1016/j.meatsci.2013.09.007
Munyaneza, J. P., Gunawan, A., & Noor, R. R. 2019. Identification of single nucleotide polymorphism and association analysis of alpha 2-heremans Schmid glycoprotein (AHSG) gene related to fatty acid traits in sheep. Int. J. Sci. Res. Sci. Tech, 6, 351-360. https://doi.org/10.32628/IJSRST196176
Nei, M., & Kumar, S. 2000. Moleculear Evolution and Phylogenetics. Oxford University Press, New York.
Odden, A., Vatn, S., Ruiz, A., Robertson, L. J., Enemark, H. L., Nes, S. K., Tommerberg, V., & Stuen, S. 2018. Excretion of Eimeria spp. oocysts in young lambs following iron supplementation. Acta Vet. Scand, 60, 49. https://doi.org/10.1186/s13028-018-0404-6
Pannier, L., Ponnampalam, E. N., Gardner, G. E., Hopkins, D. L., Ball, A. J., Jacob, R. H., Pearce, K. L., & Pethick, D. W. 2010. Prime Australian lamb supplies key nutrients for human health. Anim. Prod. Sci, 50(12), 1115-1122. https://doi.org/10.1071/AN10132
Pethick, D. W., Ball, A. J., Banks, R. G., & Hocquette, J. F. 2011. Current and future issues facing red meat quality in a competitive market and how to manage continuous improvement. Anim. Prod. Sci, 51(1), 13-18. https://doi.org/10.1071/AN10041
Pethick, D. W., Banks, R. G., Hales, J., & Ross, I. S. 2006. Australian prime lamb – a vision for 2020. International Journal of Sheep and Wool Science, 54, 66-73.
Shibuya, H., Iinuma, H., Shimada, R., Horiuchi, A., & Watanabe, T. 2010. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology, 79(3-4), 313-320. https://doi.org/10.1159/000323283
Simabuco, F. M., Morale, M. G., Pavan, I. C. B., Morelli, A. P., Silva, F. R., Tamura, R. E. 2018. p53 and metabolism: from mechanism to therapeutics. Oncotarget, 9(34), 23780-23823. https://doi.org/10.18632/oncotarget.25267.