Optimasi Pemanfaatan Instrumentasi Laboratorium Fisika Melalui Pendekatan Internet Of Things
Optimation Utilization of Physics Laboratory Instrumentation Through The Internet of Things
DOI:
https://doi.org/10.33369/pelastek.v3i1.41759Keywords:
Internet of Things, Laboratorium Fisika, Instrumentas, Optimasi, Teknologi PendidikanAbstract
Artikel ini mengkaji optimasi pemanfaatan instrumentasi laboratorium fisika melalui pendekatan Internet of Things (IoT). Melalui tinjauan literatur komprehensif, penelitian ini mengeksplorasi potensi integrasi teknologi IoT dalam meningkatkan efisiensi, akurasi, dan aksesibilitas instrumentasi laboratorium fisika. Hasil penelitian menunjukkan bahwa implementasi IoT dapat secara signifikan meningkatkan kinerja laboratorium, memungkinkan pemantauan real-time, analisis data yang lebih canggih, dan kolaborasi jarak jauh. Namun, tantangan seperti keamanan data dan standardisasi protokol masih perlu diatasi. Kesimpulannya, pendekatan IoT membuka peluang besar untuk revolusi dalam praktik laboratorium fisika, mendorong inovasi dalam penelitian dan pendidikan sains.
References
Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 88, 10-28.
Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805.
Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140.
Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: a survey. Future Generation Computer Systems, 56, 684-700.
Dutta, S., & Prasad, R. (2020). IoT-based classroom solution for effective distance learning. International Journal of Information and Education Technology, 10(7), 545-550.
Gómez, J., Huete, J. F., Hoyos, O., Perez, L., & Grigori, D. (2013). Interaction system based on internet of things as support for education. Procedia Computer Science, 21, 132-139.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2018). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.
Huang, H. M. (2018). Emerging technologies for education in physics: Opportunities and challenges. Physics Education, 53(6), 065015.
Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., & Hall, C. (2022). NMC Horizon Report: 2022 Higher Education Edition. Austin, Texas: The New Media Consortium.
Kalman, A. (2019). Enhancing students' conceptual understanding by engaging science text with reflective writing as a hermeneutical circle. Science & Education, 28(3-5), 521-542.
Li, X., Lu, R., Liang, X., Shen, X., Chen, J., & Lin, X. (2021). Smart community: an internet of things application. IEEE Communications Magazine, 49(11), 68-75.
Martínez-Jiménez, P., Pontes-Pedrajas, A., Polo, J., & Climent-Bellido, M. S. (2019). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80(3), 346.
Pérez-Lombard, L., Ortiz, J., & Pout, C. (2018). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398.
Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer Networks, 76, 146-164.
Sivaraman, A., Winstein, K., Thaker, P., & Balakrishnan, H. (2017). An experimental study of the learnability of congestion control. ACM SIGCOMM Computer Communication Review, 44(4), 479-490.
Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2018). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks, 101, 158-168.
Zhang, Y., Huang, T., & Bompard, E. F. (2020). Big data analytics in smart grids: a review. Energy Informatics, 1(1), 8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ashadi Kurniawan, Anang Siswanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.