Analisis Pemodelan Statistik Untuk Monitoring dan Evaluasi Kinerja Laboratorium MIPA Berbasis Pendekatan Big Data
Statistical Modeling Analysis for Monitoring and Evaluating The Performance of The MIPA Laboratory Based on A Big Data Approach
DOI:
https://doi.org/10.33369/pelastek.v3i1.41900Keywords:
Big Data, Pemodelan Statistik, Kinerja Laboratorium, Monitoring dan Evaluasi, Analitik PrediktifAbstract
Penelitian ini mengkaji penerapan pemodelan statistik berbasis big data untuk monitoring dan evaluasi kinerja laboratorium MIPA. Melalui tinjauan literatur komprehensif, studi ini mengeksplorasi tren terkini dalam analitik big data, pemodelan statistik, dan sistem monitoring kinerja laboratorium. Hasil menunjukkan bahwa integrasi teknologi big data dengan pemodelan statistik canggih dapat secara signifikan meningkatkan efisiensi operasional, akurasi analisis, dan pengambilan keputusan di laboratorium MIPA. Pendekatan ini memungkinkan analisis real-time, prediksi tren, dan optimalisasi sumber daya. Namun, implementasinya menghadapi tantangan seperti keamanan data, integrasi sistem, dan kebutuhan akan keterampilan khusus. Kesimpulannya, adopsi pendekatan big data dalam pemodelan statistik membuka peluang besar untuk peningkatan kinerja laboratorium MIPA, meskipun memerlukan investasi dalam infrastruktur dan pengembangan kompetensi.
References
Chen, X., Wang, Y., & Li, J. (2020). Big data analytics in STEM laboratories: Opportunities and challenges. Journal of Big Data, 7(1), 1-15.
Chen, Z., & Wang, L. (2024). Data security and privAeni, N., Widodo, S., & Prasetyo, E. (2019). Implementation of laboratory information management systems in Indonesian universities: Challenges and opportunities. Journal of Chemical Education, 96(5), 1002-1010.
Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. Journal of Loss Prevention in the Process Industries, 24(5), 477-523.
Nurcahyo, R., Apriliani, D., & Muslim, E. (2018). Safety culture assessment in higher education laboratory: A case study at chemical engineering laboratory. IOP Conference Series: Materials Science and Engineering, 334(1), 012015.
Ouédraogo, A., Groso, A., & Meyer, T. (2011). Risk analysis in research environment – Part I: Modeling Lab Criticity Index using Improved Risk Priority Number. Safety Science, 49(6), 778-784.
Purwanto, A., Asbari, M., & Santoso, P. B. (2020). Effect of integrated management system of ISO 9001:2015 and ISO 45001:2018 implementation to improve organizational performance. International Journal of Scientific and Technology Research, 9(3), 1176-1183.
Susilowati, I. H., Pratomo, H., Susanna, D., & Sutomo, A. H. (2017). Chemical safety in the laboratory: Handling and management of chemical hazards by laboratory practitioners in a developing country. Journal of Chemical Health and Safety, 24(3), 11-16.
Wu, X., Jiang, X., Xu, S., & Wang, Y. (2021). Bayesian network-based risk analysis of chemical industry parks. Journal of Loss Prevention in the Process Industries, 70, 104384.
acy concerns in big data-driven laboratory management systems. International Journal of Information Management, 65, 102345.
Kumar, S., Singh, R., & Sharma, V. (2022). Integrated big data analytics platforms for advanced laboratory monitoring. Big Data Research, 28, 100289.
Li, X., Zhang, Y., & Wang, H. (2023). Data-driven decision making in STEM laboratories: A big data perspective. Decision Support Systems, 165, 113834.
Liang, T., & Zhu, L. (2021). Big data analytics for laboratory performance optimization: A comprehensive review. Computers in Industry, 124, 103324.
Patel, A., & Sharma, R. (2022). Comparative analysis of laboratory performance using big data analytics. Journal of Chemometrics, 36(3), e3395.
Raghupathi, W., & Raghupathi, V. (2022). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 10(1), 3.
Wang, J., Liu, Y., & Chen, H. (2023). Advanced statistical modeling for laboratory performance monitoring: A machine learning approach. Expert Systems with Applications, 213, 118876.
Zhang, L., & Liu, X. (2021). Predictive analytics in laboratory management: Leveraging big data for performance optimization. Journal of Laboratory Automation, 26(2), 131-142.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.