Analisis Pemodelan Statistik Untuk Monitoring dan Evaluasi Kinerja Laboratorium MIPA Berbasis Pendekatan Big Data

Statistical Modeling Analysis for Monitoring and Evaluating The Performance of The MIPA Laboratory Based on A Big Data Approach

Authors

  • Ninik Triayu Susparini Sekolah Tinggi Analis Kimia Cilegon
  • Marwita Sekolah Tinggi Analis Kimia Cilegon
  • Dita Ariyanti Badan Riset Inovasi Nasional

DOI:

https://doi.org/10.33369/pelastek.v3i1.41900

Keywords:

Big Data, Pemodelan Statistik, Kinerja Laboratorium, Monitoring dan Evaluasi, Analitik Prediktif

Abstract

Penelitian ini mengkaji penerapan pemodelan statistik berbasis big data untuk monitoring dan evaluasi kinerja laboratorium MIPA. Melalui tinjauan literatur komprehensif, studi ini mengeksplorasi tren terkini dalam analitik big data, pemodelan statistik, dan sistem monitoring kinerja laboratorium. Hasil menunjukkan bahwa integrasi teknologi big data dengan pemodelan statistik canggih dapat secara signifikan meningkatkan efisiensi operasional, akurasi analisis, dan pengambilan keputusan di laboratorium MIPA. Pendekatan ini memungkinkan analisis real-time, prediksi tren, dan optimalisasi sumber daya. Namun, implementasinya menghadapi tantangan seperti keamanan data, integrasi sistem, dan kebutuhan akan keterampilan khusus. Kesimpulannya, adopsi pendekatan big data dalam pemodelan statistik membuka peluang besar untuk peningkatan kinerja laboratorium MIPA, meskipun memerlukan investasi dalam infrastruktur dan pengembangan kompetensi.

References

Chen, X., Wang, Y., & Li, J. (2020). Big data analytics in STEM laboratories: Opportunities and challenges. Journal of Big Data, 7(1), 1-15.

Chen, Z., & Wang, L. (2024). Data security and privAeni, N., Widodo, S., & Prasetyo, E. (2019). Implementation of laboratory information management systems in Indonesian universities: Challenges and opportunities. Journal of Chemical Education, 96(5), 1002-1010.

Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. Journal of Loss Prevention in the Process Industries, 24(5), 477-523.

Nurcahyo, R., Apriliani, D., & Muslim, E. (2018). Safety culture assessment in higher education laboratory: A case study at chemical engineering laboratory. IOP Conference Series: Materials Science and Engineering, 334(1), 012015.

Ouédraogo, A., Groso, A., & Meyer, T. (2011). Risk analysis in research environment – Part I: Modeling Lab Criticity Index using Improved Risk Priority Number. Safety Science, 49(6), 778-784.

Purwanto, A., Asbari, M., & Santoso, P. B. (2020). Effect of integrated management system of ISO 9001:2015 and ISO 45001:2018 implementation to improve organizational performance. International Journal of Scientific and Technology Research, 9(3), 1176-1183.

Susilowati, I. H., Pratomo, H., Susanna, D., & Sutomo, A. H. (2017). Chemical safety in the laboratory: Handling and management of chemical hazards by laboratory practitioners in a developing country. Journal of Chemical Health and Safety, 24(3), 11-16.

Wu, X., Jiang, X., Xu, S., & Wang, Y. (2021). Bayesian network-based risk analysis of chemical industry parks. Journal of Loss Prevention in the Process Industries, 70, 104384.

acy concerns in big data-driven laboratory management systems. International Journal of Information Management, 65, 102345.

Kumar, S., Singh, R., & Sharma, V. (2022). Integrated big data analytics platforms for advanced laboratory monitoring. Big Data Research, 28, 100289.

Li, X., Zhang, Y., & Wang, H. (2023). Data-driven decision making in STEM laboratories: A big data perspective. Decision Support Systems, 165, 113834.

Liang, T., & Zhu, L. (2021). Big data analytics for laboratory performance optimization: A comprehensive review. Computers in Industry, 124, 103324.

Patel, A., & Sharma, R. (2022). Comparative analysis of laboratory performance using big data analytics. Journal of Chemometrics, 36(3), e3395.

Raghupathi, W., & Raghupathi, V. (2022). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 10(1), 3.

Wang, J., Liu, Y., & Chen, H. (2023). Advanced statistical modeling for laboratory performance monitoring: A machine learning approach. Expert Systems with Applications, 213, 118876.

Zhang, L., & Liu, X. (2021). Predictive analytics in laboratory management: Leveraging big data for performance optimization. Journal of Laboratory Automation, 26(2), 131-142.

Downloads

Published

2025-06-20

How to Cite

Ninik Triayu Susparini, Marwita, & Dita Ariyanti. (2025). Analisis Pemodelan Statistik Untuk Monitoring dan Evaluasi Kinerja Laboratorium MIPA Berbasis Pendekatan Big Data: Statistical Modeling Analysis for Monitoring and Evaluating The Performance of The MIPA Laboratory Based on A Big Data Approach. JURNAL PENGELOLAAN LABORATORIUM SAINS DAN TEKNOLOGI, 3(1), 11–15. https://doi.org/10.33369/pelastek.v3i1.41900

Issue

Section

Articles