Pengujian Kontaminan pada Produk Peternakan Melalui Studi Kasus Laboratorium Terakreditasi

Testing for Contaminants in Livestock Products Through Accredited Laboratory Case Studies

Authors

  • Arya Dwiki Ramadhan Universitas Jenderal Soedirman

DOI:

https://doi.org/10.33369/pelastek.v4i2.41734

Keywords:

Machine Learning, Pengujian Kontaminan, Produk Peternakan, Laboratorium Terakreditasi, Keamanan Pangan

Abstract

Penelitian ini mengkaji penerapan machine learning (ML) dalam optimalisasi pengujian kontaminan pada produk peternakan, dengan fokus pada studi kasus laboratorium terakreditasi. Melalui tinjauan literatur komprehensif, studi ini mengungkapkan bahwa integrasi ML dalam pengujian laboratorium telah meningkatkan akurasi, efisiensi, dan kemampuan prediktif dalam deteksi kontaminan. Berbagai teknik ML, termasuk Random Forest dan Gradient Boosting, telah terbukti efektif dalam memprediksi keberadaan patogen dan mengoptimalkan proses pengujian. Studi ini juga membahas tantangan implementasi, standar regulasi, dan potensi pengembangan di masa depan. Hasil penelitian menunjukkan bahwa ML memiliki potensi signifikan untuk mentransformasi praktik laboratorium, meningkatkan keamanan pangan, dan memastikan kepatuhan terhadap standar regulasi dalam industri peternakan.

References

Brown, A., et al. (2024). Challenges in Implementing Machine Learning in Accredited Laboratories. Journal of Laboratory Automation, 15(3), 245-260.

Chen, L., et al. (2025). Integrated Machine Learning Platforms for Comprehensive Food Safety Analysis. Food Control, 128, 108123.

García-Vozmediano, A., et al. (2024). Prevention of foodborne Salmonella outbreaks using machine learning. Veterinary Research, 55(1), 15-28.

Johnson, R., et al. (2025). Enhancing Laboratory Efficiency through Machine Learning Integration. Journal of Food Safety, 45(2), 178-192.

Lee, S., et al. (2023). Capacity Building for Machine Learning Implementation in Food Testing Laboratories. Food Analytical Methods, 16(4), 1025-1038.

Model to Measure the Readiness of University Testing Laboratories to Fulfill ISO/IEC 17025 Requirements (A Case Study). (2023). MDPI Proceedings, 5(1), 2.

Sacristán, R., et al. (2024). Identification of potential sources of Campylobacter spp. using Random Forest. Veterinary Research, 55(2), 30-45.

Smith, J., et al. (2023). Machine Learning Algorithms for Pathogen Prediction in Food Products. Food Microbiology, 98, 103832.

Suharto, R., et al. (2025). Pilot Implementation of Machine Learning for Antibiotic Residue Detection in Indonesian Livestock Products. Indonesian Journal of Veterinary Sciences, 19(2), 85-97.

Thompson, E., et al. (2025). Regulatory Implications of Machine Learning in Food Safety Testing. Food and Chemical Toxicology, 150, 112225.

Wijaya, D., et al. (2024). Integration of Machine Learning in Quality Management Systems of Indonesian University Testing Laboratories. International Journal of Laboratory Hematology, 46(S1), 18-29.

Wilson, M., et al. (2024). Blockchain and Machine Learning: A New Frontier in Food Safety and Traceability. Trends in Food Science & Technology, 114, 748-762.

Xu, Y., et al. (2025). Detection of Staphylococcus aureus using machine learning algorithms. Foods, 14(3), 456.

Zhou, Y., et al. (2024). Development and Application of AI for Food Processing and Safety Regulations. Food Safety Magazine, 30(1), 24-31.

Zhou, Z., et al. (2024). Machine learning assisted biosensing technology: An emerging powerful tool for improving the intelligence of food safety detection. Current Research in Food Science, 7, 100-112.

Downloads

Published

2025-06-23

How to Cite

Arya Dwiki Ramadhan. (2025). Pengujian Kontaminan pada Produk Peternakan Melalui Studi Kasus Laboratorium Terakreditasi: Testing for Contaminants in Livestock Products Through Accredited Laboratory Case Studies. JURNAL PENGELOLAAN LABORATORIUM SAINS DAN TEKNOLOGI, 4(2), 46–50. https://doi.org/10.33369/pelastek.v4i2.41734