Main Article Content

Abstract

The study aimed to evaluate fish meal substitution with black soldier fly larvae supplemented with 2% Trichoderma culture on female grower performance and carcass traits quail. The materials used were 200 two-week-old female quails with an average body weight of 51.5 ± 7.3 grams. The study used a completely randomized design with five treatments and four replications. The treatments were: BSF0 (100% fish meal), BSF25 (75% fish meal + 25% BSF meal), BSF50 (50% fish meal + 50% BSF meal), BSF75 (25% fish meal + 75% BSF meal) ), BSF100 (100% BSF meal). The BSF meal used was added with 2% Trichoderma culture. The rations were iso-calorie and iso-protein, formulated from yellow corn, soybean meal, fish meal, BSF meal, mineral mix, and Trichoderma culture, with metabolic energy of 2,900 kcal/kg and 24% protein. The data were analyzed using variance analysis to determine if it had a significant effect, then continued with Duncan's Multiple Range Test. The results showed that the treatments were insignificant to the FCR, percentages carcass, and ovaries. Nevertheless, significant to (p<0.05) feed intake, live weight, average daily gain and abdominal fat. The substitution of fish meal with BSF + 2% Trichoderma culture was more than 75% decreased feed consumption which caused a decrease in quail's life weight. According to the carcass traits, the BSF + Trichoderma sp 2% could be used up to 100%. However, based on quail performance, it can be concluded that BSF + 2% Trichoderma sp can be used up to 75% in quail rations without harmful effects.

Keywords

abdominal fat carcass Hermetia ovarium Trichoderma

Article Details

Author Biographies

Mulyono Mulyono, Diponegoro University

Department of Animal Science, Faculty of Animal and Agricultural Sciences

Widiyanto Widiyanto, Diponegoro University

Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University

Dwi Sunarti, Diponegoro University

Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University

Nyoman Suthama, Diponegoro University

Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University
How to Cite
Mulyono, M., Widiyanto, W., Mangisah, I., Krismiyanto, L., Ismadi, V., Sunarti, D., & Suthama, N. (2023). Fish Meal Substitution with Black Soldier Fly Larva on Growth Performance of Female Grower Quail. Jurnal Sain Peternakan Indonesia, 18(1), 8–14. https://doi.org/10.31186/jspi.id.18.1.8-14

References

  1. Arora, K. L. and O. M. Samples. 2011. Role of body weight on reproductive and physiological traits in Japanese quail layers (Coturnix Japonica). International Journal of Poultry Science 10 (8): 640–43. https://www.researchgate.net/publication/265988624_Role_of_Body_Weight_on_Reproductive_and_Physiological_Traits_in_Japanese_Quail_Layers_Coturnix_japonica.
  2. Awoniyi, T. A. M., V. A. Aletor, and J. M. Aina. 2003. Performance of broiler - chickens fed on maggot meal in place of fishmeal. International Journal of Poultry Science 2 (4): 271–74.
  3. Bolton, W. 1967. Poultry Nutrition. MAFF Bulletin No.174.
  4. Deaton, J. W., and B. D. Lott. 1985. Age and dietary energy effect on broiler abdominal fat deposition. Poultry Science 64 (11): 2161–64. https://doi.org/10.3382/ps.0642161.
  5. Deaton, J. W., J. L. McNaughton, and B. D. Lott. 1983. The effect of dietary energy level and broiler body weight on abdominal fat. Poul. Sci. 62 (12): 2394–97. https://doi.org/10.3382/ps.0622394.
  6. Dengah, S. P., J. F. Umboh, C. A. Rahasia, and Y. H. S. Kowel. 2016. pengaruh penggantian tepung ikan dengan tepung maggot (Hermetia illucens) dalam ransum terhadap performans broiler. Jurnal Zootek 36 (1): 51–60. https://doi.org/10.1017/CBO9781107415324.004.
  7. Elad, Y., I. Chet, and Y. Henis. 1982. Degradation of plant pathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28 (7): 719–25. https://doi.org/doi.org/10.1139/m82-110.
  8. Elkomy, Hassan E., Ayman E. Taha, Heba A. Basha, Magda I. Abo-Samaha, and Mohamed M. Sharaf. 2019. Growth and reproduction performance of Japanese quails (Coturnix coturnix japonica) under various environments of light colors. Slovenian Veterinary Research 56 (March): 119–27. https://doi.org/10.26873/SVR-749-2019.
  9. Finke, M. D. 2007. Estimate of chitin in raw whole insects. Zoo Biology 26 (2): 105–15. https://doi.org/10.1002/zoo.20123.
  10. Finke, M. D. 2012. Complete nutrient content of four species of feeder insects. Zoo Biology 32 (1): 1–9. https://doi.org/10.1002/zoo.21012.
  11. Fouad, A. M., and H. K. El-Senousey. 2014. Nutritional factors affecting abdominal fat deposition in poultry: A Review. Asian-Australasian Journal of Animal Sciences. 27 (7): 1057–68. https://doi.org/10.5713/ajas.2013.13702.
  12. Genchev, A, and R Mihaylov. 2008. Slaughter analysis protocol in experiments using Japanese quails ( Coturnix Japonica ). Trakia Journal of Sciences 6 (4): 66–71. http://tru.uni-sz.bg/tsj/TJS-Vol.6%20N4%202008/Genchev_metodika-EN_2.pdf
  13. Hakim, L., K. Praseno, and T.R. Saraswati. 2014. Bobot ovarium dan hirarki folikel ovarium puyuh jepang ( Coturnix coturnix japonica ) setelah pencahayaan dengan cahaya monokromatik. Jurnal Biologi 3 (1): 19–28. https://ejournal3.undip.ac.id/index.php/biologi/article/view/19433/18432.
  14. Isahak, A., F. Doni, C. R. C. M. Zain, W. M. W. Yusoff, W. N. A. W. Mohamed, and A. Ahmad. 2014. Trichoderma. In Plant Biodiversity - Based : Research, Innovation and Business Opportunities II, edited by A. Abdullah, W. K. Kee, and S. Tih, First Prin, 90–104. BioBiz Innovation Research Group, Selangor.
  15. Kianfar, R., H. Moravej, M. Shivazad, M. Taghinejad-Roudbaneh, and M. A. Shahrasb. 2013. The effects of dry heat processing, autoclaving and enzyme supplementation on the nutritive value of wheat for growing japanese quails. Journal of Applied Animal Research 41 (1): 93–102. https://doi.org/10.1080/09712119.2012.738220.
  16. Kroeckel, S., A. G. E. Harjes, I. Roth, H. Katz, S. Wuertz, A. Susenbeth, and C. Schulz. 2012. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute — growth performance and chitin degradation in juvenile Turbot (Psetta maxima). Aquaculture 364–365 (October): 345–52. https://doi.org/10.1016/j.aquaculture.2012.08.041.
  17. Longvah, T., K. Mangthya, and P. Ramulu. 2011. Nutrient composition and protein quality evaluation of Eri Silkworm (Samia ricinii) prepupae and pupae. Food Chemistry 128 (2): 400–403.
  18. Lotfi, E., S. Zerehdaran, and M. Ahani Azari. 2011. Genetic evaluation of carcass composition and fat deposition in japanese quail. Poultry Science 90 (10): 2202–8. https://doi.org/10.3382/ps.2011-01570.
  19. Mahmood, M., A. Rahman, Saima, A Muhammad, T. N. Pasha, and M. A. Jabbar. 2014. Effect of dietary energy levels on growth performance and feed cost analysis in japanese quail. Pakistan J. Zool. 46 (5): 1357–62. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1038.4549&rep=rep1&type=pdf
  20. Marono, S., G. Piccolo, R. Loponte, C. Di Meo, Y. A. Attia, A. Nizza, and F. Bovera. 2015. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Italian J. Anim.Sci. 14: 338–43. https://doi.org/10.4081/ijas.2015.3889.
  21. Mizutani, M. 2003. The Japanese Quail. Laboratory Animal Research Station,Nippon Institute for Biological Science, Kobuchizawa, Yamanashi, Japan, 408-0041. https://www.angrin.tlri.gov.tw/apec2003/Chapter5JPQuail.pdf
  22. Mulyono, M., V. D. Yunianto, N. Suthama, and D. Sunarti. 2019. The Effect of fermentation time and Trichoderma levels on digestibility and chemical components of black soldier fly (Hermetia illucens) larvae. Livestock Research for Rural Development. Livestock Research for Rural Development. Volume 31, Article #150. 31 (10): 1–5. http://www.lrrd.org/lrrd31/10/mulyo31150.html.
  23. Narinc, D., E. Karaman, and T. Aksoy. 2014. Effects of slaughter age and mass selection on slaughter and carcass characteristics in 2 lines of japanese quail. Poultry Science 93 (3): 762–69. https://doi.org/10.3382/ps.2013-03506.
  24. Ocak, N., and G. Erener. 2005. The effects of restricted feeding and feed form on growth, carcass characteristics and days to first egg of japanese quail (Coturnix coturnix Japonica). Asian-Australasian Journal of Animal Sciences 18 (10): 1479–84. https://doi.org/10.5713/ajas.2005.1479.
  25. Oguz, I., Y. Akba?, and F. Kirkpinar. 1999. Carcass characteristics and carcass composition in lines of japanese quail (Coturnix coturnix japonica), unselected and selected for four-week body weight. J. Appl. Anim. Res. 15 (2): 175–80. https://doi.org/10.1080/09712119.1999.9706250.
  26. Rambet, V., J. F. Umboh, Y. L. R. Tulung, and Y. H. S. Kowel. 2016. Kecernaan protein dan energi ransum broiler yang menggunakan tepung Maggot (Hermetia illucens) sebagai pengganti tepung ikan. Jurnal Zootek 36 (1): 13–22.
  27. Saima, M. A., M. Z.U. Khan, M. I. Anjum, S. Ahmed, M. Rizwan, and M. Ijaz. 2008. Investigation on the availability of amino acids from different animal protein sources in golden cockerels. Journal of Animal and Plant Sciences 18 (2–3): 53–56. https://www.researchgate.net/publication/265924591_Investigation_on_the_availability_of_amino_acids_from_different_animal_protein_sources_in_golden_cockerels
  28. Sandhya, C., L. K. Adapa, K. M. Nampoothiri, P. Binod, G. Szakacs, and A. Pandey. 2004. Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J. Basic Microbiol 44 (1): 49–58. https://doi.org/10.1002/jobm.200310284.
  29. Sezer, M., E Berberoglu, and Z Ulutas. 2006. Genetic association between sexual maturity and weekly live-weights in laying-type japanese quail. South African Journal of Animal Science 36 (2): 142–48. https://doi.org/10.4314/sajas.v36i2.3997.
  30. Steel, R. G. D., J. H. Torrie, and D. A. Dickey. 1997. Principles and Procedures of Statistics : A Biometrical Approach. 3rd Ed. McGraw Hill, New York.
  31. Teguia, A., M. Mpoame, and J. A. O. Mba. 2002. The production performance of broiler birds as affected by the replacement of fish meal by maggot meal in the starter and finisher diets. Tropicultura 20 (4): 187–92. https://www.researchgate.net/profile/CJ_Stigter/publication/40797646_Traditional_underground_grain_storage_in_clay_soils_in_Sudan_improved_by_recent_innovations/links/00b4952b3be9c7040e000000.pdf#page=29.
  32. Tugiyanti, E., and S. Herijanto. 2018. Carcass production and meat tenderness characteristics of culled quail fed with azolla microphylla flour supplemented basal feed. Buletin Peternakan 42 (4): 315–21. https://doi.org/10.21059/buletinpeternak.v42i4.36368.
  33. Ulhoa, C. J., and J. F. Peberdy. 1991. Regulation of chitinase synthesis in Trichoderma harzianum. Journal of General Microbiology 137 (9): 2163–69. https://doi.org/10.1099/00221287-137-9-2163.
  34. Widjastuti, T., R. Wiradimadja, and D. Rusmana. 2014. The effect of substitution of fish meal by black soldier fly (Hermetia illucens) maggot meal in the diet on production performance of quail (Coturnix coturnix japonica). Scientific Papers. Series D. Animal Science LVII: 125–29.
  35. Wiradimadja, R., W. G. Piliang, M. T. Suhartono, and W Manalu. 2007. Umur Dewasa Kelamin Puyuh Jepang Betina Yang Diberi Ransum Mengandung Tepung Daun Katuk (Sauropus Androgynus, L.Merr). Animal Production 9 (2): 67–72. http://www.animalproduction.net/index.php/JAP/article/download/157/146